A population is a group of individuals of the same species that inhabit a given area
Population ecology is
What do population ecologists study?
Population dynamics — how population size/density changes over time in a single habitat
Distributions — how populations are distributed over space
Landscape-level dynamics — how populations are maintained at the landscape level (metapopulation)
Population dynamics
birth & death
(immigration, emigration)
Spatial distribution
local environments, dispersal
Initial population size \(N_0\), birth rate \(b\) & death rate \(d\)
\[ \begin{align} N_1 &= N_0 + bN_0 - dN_0\\ N_2 &= N_1 + bN_1 - dN_1\\ ... \end{align} \]
When \(N_0 = 10\), \(b=0.8\) and \(d=0.2\)
\[ \begin{align} N_1 &= N_0 + bN_0 - dN_0\\ &= 10 + 0.8*10 - 0.2*10\\ &= 16\\ \end{align} \]
Then \(N_1 = 16\), \(b=0.8\) and \(d=0.2\)
\[ \begin{align} N_2 &= N_1 + bN_1 - dN_1\\ &= 16 + 0.8*16 - 0.2*16\\ &= 25.6\\ \end{align} \]
Generalize as \(N_t\) and modify the equation
\[ \begin{align} N_{t+1} &= N_{t} + bN_{t} - dN_{t} &&\text{Generalized}\\ N_{t+1} - N_{t} &= bN_{t} - dN_{t} &&\text{Subtract $N_{t}$ from both sides}\\ N_{t+1} - N_{t} &= (b-d)N_{t} &&\text{Organize the equation}\\ \Delta N_{t} &= rN_{t} &&\text{$\Delta N_t = N_{t+1} - N_{t}$, $r = b-d$}\\ \end{align} \]
Model
\(N_{t+1} = N_{t} + rN_{t}\)
Growth rate \(r\)
Geometric population model assumes
Convert the model to a continuous version
Model
\[ \begin{aligned} \frac{dN}{dt} &= rN\\ N_t &= e^{rt}N_0 \end{aligned} \]
Population growth rate
Recall: \(r = b-d\)
Create “time” data t
(x-axis)
seq()
is a function to create a vectorfrom
, to
and length
Check elements
## [1] 0.0000000 0.5050505 1.0101010 1.5151515 2.0202020
## [1] 47.97980 48.48485 48.98990 49.49495 50.00000
Define the initial population size N0
## [1] 10
Define the population growth rate r
0
as a reference case## [1] 0
Write the equation
exp(x)
is \(e^x\)Visualize with plot()
Try another parameter
r1
as -0.1
Compare with N
Recall: what’s the role of theory?
Theory
Recall: what’s the role of observation?
Observation
*Note: in practice, parameter inference is much more complex to account for sampling uncertainty
In the exponential model of population growth
*Exponential model is appropriate for describing dynamics of a newly established population
Instantaneous population growth \(\frac{dN}{dt}\) is
\[ \begin{align} \frac{dN}{dt} &= rN &&\text{Exponential model}\\ \frac{dN}{dt} &= rN(1-\frac{N}{K}) &&\text{Logistic model}\\ \end{align} \]
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K}) &&\text{Logistic model}\\ \end{align} \]
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K}) &&\text{Logistic model}\\ \end{align} \]
Questions
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K})\\ \end{align} \]
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K}) &&\text{Logistic model}\\ \end{align} \]
The term \(1-\frac{N}{K}\)
Solve the equation
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K})\\ N_t &= \frac{K}{1+(\frac{K-N_0}{N_0})e^{-rt}} \end{align} \]
Model
\[ \begin{align} N_t &= \frac{K}{1+(\frac{K-N_0}{N_0})e^{-rt}} \end{align} \]
Create time: t={0...50}
Define parameters: r=1
, K=200
, N0=10
Model
\[ \begin{align} N_t &= \frac{K}{1+(\frac{K-N_0}{N_0})e^{-rt}} \end{align} \]
Write in two lines to avoid errors
Model
\[ \begin{align} N_t &= \frac{K}{1+(\frac{K-N_0}{N_0})e^{-rt}} \end{align} \]
Make predictinos under the following scenarios
r=0.1
, K=200
, N0=10
(store as N1
)r=1
, K=100
, N0=200
(store as N2
)Modify the equation to facilitate your understanding
\[ \begin{align} \frac{dN}{dt} &= rN(1-\frac{N}{K})\\ \frac{dN}{dt} &= N(r-\frac{rN}{K})\\ \frac{dN}{dt} &= (r-\beta N)N &&\text{Use $\beta = \frac{r}{K}$}\\ \end{align} \]
Example
\[ \begin{align} N_1 &= \lambda N_0\\ N_2 &= \lambda N_1\\ N_3 &= \lambda N_2 \end{align} \]
Express differently
\[ \begin{align} N_3 &= \lambda N_2\\ &= \lambda * \lambda N_1\\ &= \lambda * \lambda * \lambda N_0\\ &= \lambda^3 N_0\\ \end{align} \]
Generalize - Geometric model
\[ \begin{align} N_{t+1} &= \lambda N_t &&\text{relate $N_{t+1}$ to $N_t$}\\ N_t &= \lambda^t N_0 &&\text{relate $N_{t}$ to $N_0$}\\ \end{align} \]
Compare
\[ \begin{align} N_t &= \lambda^t N_0 &&\text{Geometric}\\ N_t &=e^{rt} N_0 &&\text{Exponential}\\ \end{align} \]
Let \(e^r\) be \(\lambda\)…the two models become identical!
Geometric
a population grows when \(\lambda > 1\) (i.e. \(r > 0\))
Exponential
a population grows when \(r > 0\) (i.e. \(\lambda > 1\))
Beverton-Holt model
Include density dependence (\(\beta = \frac{\lambda-1}{K}\))
\[ \begin{align} N_{t+1} &= \frac{\lambda N_t}{1 + \beta N_t} &&\text{relate $N_{t+1}$ to $N_{t}$}\\ \frac{N_{t+1}}{N_t} &= \lambda_t = \frac{\lambda}{1 + \beta N_t} \end{align} \]
Beverton-Holt model
Solve the equation
\[ \begin{align} N_{t+1} &= \frac{\lambda N_t}{1 + \beta N_t} &&\text{relate $N_{t+1}$ to $N_{t}$}\\ N_{t} &= \frac{K}{1+(\frac{K-N_0}{N_0})\lambda^{-t}} &&\text{relate $N_{t}$ to $N_{0}$}\\ \end{align} \]
Compare
\[ \begin{align} N_{t} &= \frac{K}{1+(\frac{K-N_0}{N_0})\lambda^{-t}} &&\text{Beverton-Holt}\\ N_t &= \frac{K}{1+(\frac{K-N_0}{N_0})e^{-rt}} &&\text{Logistic}\\ \end{align} \]
Let \(e^r\) be \(\lambda\)…the two models become identical!
Continuous models are used in pure theoretical research
Discrete models can be used in both theoretical and statistical analysis
No resource limitation
Resource limitation
There are (many) other models
but most of them are a modification of these basic models